论文库
A novel hybrid artificial bee colony algorithm with crossover operator for numerical optimization
论文编号:
第一作者: Yan XH(晏晓辉);Zhu YL(朱云龙);Chen HN(陈瀚宁);Zhang H(张浩)
联系作者:
发表年度: 2015
期: 1
卷: 14
页: 169-184
摘要: Artificial Bee Colony (ABC) algorithm is one of the most recently introduced swarm intelligence algorithms which inspired by the foraging behavior of honey bee swarms. It has been widely used in numerical and engineering optimization problems. This paper presents a hybrid artificial bee colony (HABC) model to improve the canonical ABC algorithm. The main idea of HABC is to enhance the information exchange between bees by introducing the crossover operator of genetic algorithm to ABC. With suitable crossover operation, valuable information is fully utilized and it is expected that the algorithm can converge faster and more accurate. Eight versions of HABC algorithm combined by different selection and crossover methods under the model were proposed and tested on several benchmark functions. Then, the settings of the new parameter crossover rate for two well performed HABC versions are tested to verify their best values. Finally, four rotated functions and four shifted functions are used to test the performance of the two algorithms on complex functions and asymmetric functions. Experiment results showed that these two versions of HABC algorithm offer significant improvement over the original ABC and are superior to other two state of the art algorithms on some functions. 漏 2013 Springer Science+Business Media Dordrecht.
英文摘要:
刊物名称: Natural Computing
学科:
论文出处:
论文类别:
参与作者:
影响因子:
全文链接: